Name:_____
Geometry

Date:_____ Band:

Unit 3: Parallel and Perpendicular Lines Study Guide

LT#1: Identify relationships between figures in space.

Name one pair of each of the segments or planes. Lines and planes that appear to be parallel are parallel.

- 1. parallel segments
- 2. skew segments
- 3. parallel planes

LT#2: Identify angles formed by two lines and a transversal.

Identify all numbered angle pairs that form the given type of angle pair. Then name the two lines and transversal that form each pair.

- **4.** alternate interior angles
- 5. same-side interior angles
- 6. corresponding angles
- 7. alternate exterior angles

Classify the angle pair formed by $\angle 1$ and $\angle 2$.

8.

9.

LT#3: Prove theorems about parallel lines.

Write a two-column, paragraph, or flow chart proof.

10. Given: $a \parallel b$

Prove: $\angle 1$ and $\angle 8$ are supplementary.

11. Given: $a \parallel b$

Prove: $\angle 1 \cong \angle 7$

LT#4: Use properties of parallel lines to find angle measures.

Find $m \angle 1$ and $m \angle 2$. Justify your answers.

12.

13.

14. Find the values of x and y in the diagram below.

LT#5: Determine whether two lines are parallel.

Find the value of x for which $l \parallel m$.

15.

16.

Use the given information to decide which lines, if any, are parallel. Justify your conclusions.

18.
$$m \angle 3 + m \angle 6 = 180$$

19.
$$m \angle 2 + m \angle 3 = 180$$

LT#6: Relate parallel and perpendicular lines.

Use the diagram at the right to complete each statement.

21. If $b \perp c$ and $b \perp d$, then $c _ d$.

22. If
$$c \parallel d$$
, then ____ $\perp c$.

23. Morris Avenue intersects both 1^{st} Street and 3^{rd} Street at right angles. 3^{rd} Street is parallel to 5^{th} Street. How are 1^{st} Street and 5^{th} Street related? Explain.

LT#7: Use parallel lines to prove a theorem about triangles.

Write a two-column, paragraph, or flow chart proof.

24. Given: ΔABC with right angle C

Prove: $\angle A$ and $\angle B$ are complementary.

25. Prove the Triangle Exterior Angles Theorem. **Given:** $\angle 1$ is an exterior angle of the triangle.

Prove: $m \angle 1 = m \angle 2 + m \angle 3$

LT#8: Find measures of angles of triangles.

Find the values of the variables.

26.

27.

The measures of the three angles of a triangle are given. Find the value of x.

29.
$$x + 10, x - 20, x + 25$$

30.
$$20x + 10{,}30x - 2{,}7x + 1$$

LT#9: Graph and write linear equations.

Find the slope of the line passing through the points.

32.
$$(-7,2), (-7,-5)$$

33. Name the slope and *y*-intercept of y = 2x - 1. Then graph the line.

34. Name the slope and point on y - 3 = -2(x + 5). Then graph the line.

Write an equation of the line.

35. slope
$$-\frac{1}{2}$$
, y-intercept 12

36. slope 3, passes through
$$(1, -9)$$

37. passes through (4,2) and (3,-2)

LT#10: Relate slope to parallel and perpendicular lines.

Determine whether \overrightarrow{AB} and \overrightarrow{CD} are parallel, perpendicular, or neither.

38.
$$A(-1, -4)$$
, $B(2,11)$, $C(1,1)$, $D(4,10)$

39.
$$A(2,8)$$
, $B(-1,-2)$, $C(3,7)$, $D(0,-3)$

40.
$$A(-3,3)$$
, $B(0,2)$, $C(1,3)$, $D(-2,-6)$

41.
$$A(-1,3)$$
, $B(4,8)$, $C(-6,0)$, $D(2,8)$

42. Write an equation of the line parallel to y = 8x - 1 that contains (-6,2).

43. Write an equation of the line perpendicular to $y = \frac{1}{6}x + 4$ that contains (3, -3).